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Abstract: This study combined a previously developed optical system with two additional 
key elements: a supercontinuum light source characterized by high output power and an 
analytical technique that effectively extracts interference signals required for improving the 
detection limit of vibration amplitude. Our system visualized 3D tomographic images and 
nanometer scale vibrations in the cochlear sensory epithelium of a live guinea pig. The 
transverse- and axial-depth resolution was 3.6 and 2.7 µm, respectively. After exposure to 
acoustic stimuli of 21–25 kHz at a sound pressure level of 70–85 dB, spatial amplitude and 
phase distributions were quantified on a targeted surface, whose area was 522 × 522 μm2. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The cochlea of the inner ear transduces sound energy, which is a form of mechanical energy, 
into electrical signals, which are essential for a neurotransmitter release. This process is 
triggered by nanoscale vibrations induced in the cochlear sensory epithelium, which contains 
a layer of sensory hair cells and the basilar membrane (BM), i.e., the underlying extracellular 
matrix. The vibrations in the BM are controlled by the active motion of hair cells [1–4]. 
Although this arrangement is thought to critically contribute to the high sensitivity and sharp 
tuning of hearing, the in vivo behavior of each layer as well as the correlation of the dynamics 
among multiple layers remain unclear. 

To address these issues, various optical measurement systems have been developed. Laser 
Doppler vibrometer (LDV) techniques can detect epithelial vibrations in the picometer range 
[5–10]. For example, in the cochlea, traveling waves elicited by sound stimulation propagate 
from the base to apex on the BM thus forming a spatial amplitude distribution. To determine 
the vibration distribution caused by the motion of a traveling wave, asynchronous 
measurement has been conducted by means of beam scans in an LDV system [11]. 
Nonetheless, such methods are inherently unable to simultaneously determine the vibration 
distribution on a targeted surface and extract tomographic information from a sample. 
Therefore, they are not applicable to the analysis of each layer in the sensory epithelium. In 
this regard, stroboscopic detection schemes may be useful for detecting the vibrations [12–
15]; however, systems based on such methods are usually too complicated to be integrated 
into a microscope for in vivo measurement. 

To analyze the motions inside the tissue and overcome the above-mentioned 
shortcomings, we recently proposed multifrequency-swept optical coherence microscopic 
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vibrometry (MS-OCMV), which is a combination of wide-field heterodyne interferometric 
vibrometry (WHIV) [16] and multifrequency-swept interferometry [17,18]. This approach 
can successfully record not only 3D volumetric tomography but also wide-field vibrations on 
a surface inside a biological tissue [18]. Nevertheless, it cannot accurately measure nanoscale 
vibrations in the sensory epithelium for the following two reasons. First, the power of the 
installed superluminescent diode (SLD) is too low to achieve adequate signal reflection from 
the tissue (the power of the light applied to the sample: 0.9 mW). Second, the method for 
analysis of the interference signals is unsuitable because one of the frequency components 
required for quantifying vibration amplitude overlapped with direct current (DC) component 
at frequency of 0 Hz. 

To overcome these problems, we employ a supercontinuum (SC) light source, which 
provides more powerful irradiation than an SLD does in the present study. Furthermore, to 
effectively extract the interference signals that represent vibrations of an object in the 
nanometer range, we modulate the motion of the reference mirror in the WHIV system. 

As for newly devised technologies, in recent years, optical coherence tomography (OCT) 
was widely used and can be regarded as a competitor of our optical system. Among such 
methods, spectral-domain OCT and swept-source OCT combined with Doppler techniques 
have been applied to the measurement of inner-ear vibration [19–21]. The scanning in these 
two technologies is oriented differently. Doppler types of OCT can immediately determine a 
cross-sectional distribution of vibration in the depth direction along an “a-scan” line. On the 
other hand, our system can reduce the lag for the lateral beam scan by performing the en face 
measurement using a CMOS camera and can immediately capture the lateral vibration on a 
surface. Nonetheless, it requires multifrequency sweeping for the cross-sectional scan in the 
axial depth direction, as is the case for time domain OCT. Therefore, Doppler types of OCT 
are specialized for cross-sectional imaging, whereas our technique is useful for en face 
imaging of a laterally spread vibration distribution on an internal surface such as the BM in 
the cochlear sensory epithelium. 

When we limit the application to en face vibration measurement in a sensory epithelium 
with low reflectance (0.02%–0.06%) [22], Doppler types of OCT require repeated A-scans to 
average the data and reduce the noise floor [23]. In addition, the M-scan mode is often used 
for monitoring temporal changes in the vibrations. Thus, these two configurations result in an 
asynchronous B-scan with a lag, which makes simultaneous measurement of wide-range 
motions difficult in a live biological tissue. 

To overcome this difficulty, we attempted in vivo en face vibration analysis of a sensory 
epithelium by MS-OCMV. The improvements enable us to quantitatively visualize the wide-
field vibrations on the surface of a desired depth position in the sensory epithelium of a live 
animal. Moreover, the motion and a three-dimensional (3D) volumetric image of the tissue 
can be captured without averaging the data. 

2. Methods 

2.1. Instrumentation 

The setup of the improved MS-OCMV is shown in Fig. 1(A). This system consists of a 
multifrequency generation unit, microscopic interferometer, and detection unit. 

The multifrequency generation unit consists of an SC light source (SuperK EXR-4; NKT 
Photonics, Denmark), a Fabry–Pérot filter (FPF), and an optical bandpass filter (OBF). For 
practical use, we extracted a wavelength band ranging from 600 to 980 nm by means of the 
OBF. The light beam characterized by discrete multifrequency components was acquired by 
transmitting the collimated and filtered SC light through the FPF. Figure 1(B) depicts a 
comparison between the spectrum of the multifrequency light from the SC and that of an SLD 
(T-850-HPI, Superlum, Ireland), which we used in the original system [17]. These data were 
obtained through the FPF. The bandwidth of the SC was similar to that of the SLD (~200 
nm); nevertheless, maximum irradiation of the sample surface in the case of the former light 
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source was improved to 37 mW, whereas maximum irradiation in the case of the latter light 
source was 0.9 mW. 

The FPF consists of two partially reflecting mirrors with reflectivity 0.8, each of which is 
attached to a different piezoelectric actuator (PA) (MOB-A or MD-140L; MESS-TEC, 
Japan). Cavity length, d, determines the interval frequency (i.e., the free spectral range), Δν, 
via the relation Δν = c/(2d), where c is the light speed in air. The linewidth of the longitudinal 
mode is determined by the finesse value of the plates, which was ~14 in our implementation. 
In our experiments, d was set to ~20 mm; Δν was estimated to be 7.5 GHz. Thus, considering 
the finesse, multifrequency components were produced with estimated linewidth of 535.7 
MHz (1.2 pm in terms of wavelength). The cavity length was varied by means of the two 
aforementioned PAs to perform an axial depth scan by multifrequency-swept interferometry 
[18]. The PAs were driven by a ramp signal from a function generator (WW5064; Tabor 
Electronics, Israel). The signal was magnified by a high-power amplifier (TZ-0.5P; 
Matsusada Precision, Japan), and the total stroke of the PAs was 980 μm. 

 

Fig. 1. Instrumentation of the improved MS-OCMV system. (A) The schematic of the setup. 
A: analyzer; FC: fiber collimator; FG: function generator; FPF: Fabry–Pérot filter; GP: glass 
plate for dispersion compensation; HPA: high-power amplifier; M: mirror; OBF: optical 
bandpass filter; P: polarizer; PA: piezoelectric actuator; PBS: polarized beam splitter; QWP: 
quarter wave plate; PZT: piezoelectric transducer; RM: reference mirror; TRIG: trigger. (B) 
Spectra of SC and SLD light sources. Note that the signal intensity in either case was 
normalized. (C) A micrograph of a test target. Our system distinguished 144 line pairs/mm 
(Group 7, Element 2). 

The generated multifrequency light entered the microscopic interferometer that was 
subjected to full-field tomographic and vibration measurements. The incident light was split 
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using a polarization beam splitter (PBS) to irradiate the sample and reference mirror surfaces. 
The polarizer was combined with the PBS to adjust the branching ratio between the two split 
beams. These beams were polarized orthogonally to each other. In each arm, a quarter wave 
plate (QWP) was inserted to avoid unexpected reflections from the optical elements. The 
beam that passed through the QWP was incident toward either the reference mirror or the 
sample. The reflected beam again passed through the QWP and was directed to the PBS. The 
polarization of the reflected beam was rotated by 90° as compared to the polarization of the 
incident beam. Consequently, the beam in the reference arm was polarized orthogonally to the 
beam in the sample arm; these two beams were recombined in the PBS and entered the 
objective lens. In this process, polarizations of stray light beams, which were scattered from 
other optical elements located between the QWPs and PBS or polarizer, were not rotated; 
therefore, they could not enter the objective lens through the PBS. Moreover, the system was 
equipped with a rotatable linear polarizer as an analyzer to attain optimal interference contrast 
by controlling the polarization extinction ratio between the two beams from reference and 
sample arms. 

The reference mirror is a well-polished glass plate with a reflectance of approximately 
4%. The reference path length is modulated by a piezoelectric transducer (PZT) attached to 
the mirror; this mechanism plays a key role in the operation of the improved WHIV (see the 
next subsection). 

An en face interferometric image of the sample surface was captured by means of an 
inverted microscope having an objective lens characterized by an ultralong working distance 
of 205 mm (UWZ200; Union Optics, Japan). This profile provided us with sufficient space 
for laying an anesthetized guinea pig under the lens. Optical magnification varied from 0.7 to 
9.8. The depth of focus and numerical aperture at maximum magnification were 62 μm and 
0.093, respectively. This information is available in the manufacturer’s instructions (URL: 
http://www.union.co.jp/en/union_uwz.php). Imaging resolution was estimated to be 3.6 μm 
via microscopic examination of a test target (USAF Resolving Power Test Target 1951) as 
shown in Fig. 1(C). In this figure, we confirmed that 1 pixel of the CMOS camera 
corresponds to approximately 2.1 μm at maximum magnification. 

The axial depth scan can be operated without changing the optical path difference (OPD), 
although this process requires vertical motion of the microscopic interferometer in 
conventional time domain full-field OCT systems. 

The principle of multifrequency-swept interferometry has been established in our earlier 
study [18]. As mentioned above, the interval of the spectral multifrequency components, Δν, 
is correlated with the cavity length, d [because Δν = c/(2d)]. The interference signal of the 
multifrequency light manifested repetitive fringe peaks (i.e., high-order interference) with a 
constant interval of ΔOPD = c/Δν = 2d. Thus, the OPD that yields the first-order interference 
peak is 2d. During our measurement, the optical path length of the object arm was set to be 
identical to focal length, whereas the length of the reference arm was set to approximately 22 
mm (i.e., half of ΔOPD) longer than that of the other arm. Owing to this arrangement, the first-
order interference peak overlapped with the focal plane. When d was varied by controlling the 
FPF, ΔOPD changed, resulting in operation of the axial depth scanning. Note that for this 
mode, the motion of the reference mirror is unnecessary. The maximum scanning range of the 
first-order interference peak is equivalent to the maximum stroke of the FPF. 

Depth imaging of 3D OCT and vibration analysis with the WHIV technique, which are 
described in detail in the next subsection, are separate procedures. Because d of the FPF 
corresponds to ΔOPD of the interferometer, the position on the Z-axis where interference 
occurs changes according to the cavity length of the FPF. In this manner, we can determine a 
depth position of interest for the en face vibration measurement and obtain the vibration 
parameters on the X-Y plane at the depth position. 

To rapidly capture en face interferometric images, a high-speed CMOS camera 
(FASTCAM Mini AX200; Photron, Japan; 1024 × 1024 pixels; pixel size, 20 × 20 μm; bit 
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depth, 12; frame rate, 2000 fps) was employed as a detector. The sensitivity of the sensor is 
ISO 40,000 as per ISO standard. Full-well capacity is 16,000 e−, and the sensor dynamic 
range is 54.8 dB. The captured images were transferred to a PC, which also controlled the 
CMOS camera, SC light source, and function generator. The trigger for initiating a recording 
was generated by the function generator. In our system, two types of acquisition were 
performed: volume scans (three spatial dimensions) and vibrometry (two spatial dimensions + 
one temporal dimension). In both cases, the acquisition speed of the 3D volume data was 2 
Gvoxels/s. Transfer of one volume data set of 1.024 GB took approximately 1 min. The 
maximum data size was 1024 pixels on the X-axis, 1024 pixels on the Y-axis, and 8000 
frames along the Z-axis for a typical volumetric data set and a similar approach for the 
vibrometry data sets. All the captured images were processed and analyzed in the MATLAB 
software. 

2.2. Improvement of the WHIV technique 

Our previous WHIV technique requires Fourier domain analysis using two different 
frequency components to quantify the amplitude and phase of the sample’s vibration [16–18]. 
These two components are called a “zeroth-order signal” at a frequency of 0 Hz and a “first-
order signal,” which corresponds to a difference frequency (i.e., beat frequency) between the 
frequencies of sample and reference vibrations. In the original method, the DC component 
overlapped and added linearly to the zeroth-order signal because the frequency of the first-
order signal was 0 Hz. Therefore, a possible disadvantage of the original method is that the 
DC component interferes with proper extraction of the zeroth-order component required for 
estimation of the vibration amplitude (see Subsection 4.2). This problem is prominent when 
the measurement targets are biological samples that yield weak interference signals, such as 
the cochlear sensory epithelium. 

To overcome this drawback, we added low-frequency DC offset modulation to the 
modulation provided for the reference mirror. Figure 2 illustrates a comparison of the spectral 
signal obtained by the improved method with the signal obtained by the original technique. In 
the former case, the zeroth-order frequency component was clearly separated from the bias 
noise owing to the offset modulation. 

 

Fig. 2. Modification of the WHIV technique. In the original vibrometric method (A) [16], 
simple sinusoidal modulation illustrated in the upper panel was applied to the reference mirror. 
In this condition, the zeroth component F(0) overlapped with the DC component, A (lower 
panel). By contrast, in the improved method (B), sinusoidal DC offset modulation was added 
to the reference modulation (upper panel). This approach completely separates the zeroth 
component from bias noise at a frequency of f0 Hz, i.e., F1,0 (lower panel). From frequency 
components F1,0 and F1,1, vibration amplitude Zs and phase Φs can be properly estimated 
without disturbance by the DC component (see Subsection 4.2). 
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The details of the improvement are as follows. Suppose that the sample is stimulated by a 
pure tone sound at a frequency of fs and the reference mirror is sinusoidally vibrated at a 
slightly different frequency, fr = fs + Δf. Moreover, offset modulation with a low frequency, f0, 
is added to the motion of the reference mirror. The effect of these three factors on the 
temporal interference signal is expressed as 

 ( ) s s s r r r 0 0 0cos[ cos(2p ) cos(2p ) cos(2p ) ],xy xy xy xyI t A B Z f t F Z f t F Z f t F a= + + + + + + +        (1) 

where Axy and Bxy denote DC component that do not contribute to the interference and 
interferometric amplitude, respectively. αxy is the spatial interferometric phase distribution at 
depth position d’, and Zs, Zr, and Z0 are the spatial amplitude distributions of the vibrating 
sample, reference mirror, and offset modulation, respectively. In addition, Φs, Φr, and Φ0 are 
the initial phase distributions of the acoustic stimulus, reference mirror vibration, and offset 
modulation, respectively. In general, the frame rate of a standard CMOS camera is much 
lower than that of conventional photodetectors whose sampling rate ranges from a few 
hundred kilohertz to several tens of gigahertz. This configuration averages and reduces 
relatively high-frequency components of the temporal interference signal [see Eq. (1)] but 
affects low-frequency components negligibly. Therefore, the components Δf and f0 that are 
sufficiently lower than the frame rate of the camera are retained in the frequency domain. 
After application of the Jacobi–Anger expansion [24] and exclusion of the terms associated 
with higher frequencies, Eq. (1) can be rewritten as follows: 
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where m and n are positive integers that are indices associated with the harmonics f0 and Δf, 
and Jk denotes the kth order Bessel function of the first kind. M and N are limits of harmonic 
orders, which are determined by the exposure time and frame rate of the camera. Φ denotes a 
relative phase, which is expressed as Φ = Φr − Φs. The absolute phase value of Φ is relatively 
changed depending on the timing of triggering to start capturing. In our current system, 
however, the trigger and signals for modulations were not synchronized. Thus, absolute phase 
value Φ was changed randomly with each measurement. The absolute value of Φ can be 
changed arbitrarily by adjusting the start point of the recorded signal during this data 
processing. Thus, in this case, relative spatial phase differences become more important. 
Therefore, for convenience, we redefine Φs as a resulting phase Φs = Φ including the 
reference phase Φr. 

In the frequency domain, the signal represented by Eq. (2) is composed of a carrier 
frequency of f0 and neighboring sidebands with a frequency spacing of Δf (Fig. 2(B)). After 
the Fourier transform presented in Eq. (2), complex amplitudes of high-order components 
defined as Fm,n associated with harmonic frequency mf0 + nΔf can be denoted as 
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For estimating Zs and Φs, frequency components F1,0 and F1,1 are extracted from the 
observed frequency components. Here, an intensity ratio, r01, is defined as r01 = |F1,0|/|F1,1|. It 
can also be described as |J0(Zs)J0(Zr)|/|J1(Zs)J1(Zr)|. In this context, we can derive an evaluation 
function, ε(z) = {r01- |J0(z)J0(Zr)|/|J1(z)J1(Zr)|}

2. Amplitude distribution Zs(x, y) can be obtained 
with such z that this value minimizes ε(z) at each x-y coordinate. We developed a MATLAB 
code that evaluated ε(z) and solved for z by comparing the measured value of r01 with a 
precomputed data set of |J0(z)J0(Zr)|/|J1(z)J1(Zr)| as the function of z varied from 0.000 rad to 
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2.404 rad in increments of 0.001 rad. Therefore, the accuracy of this solving procedure was 
0.001 rad. The identified value of z can be estimated to be Zs within the constraint condition 
of z ≤ 2.404 rad. Preferred values of Zr and Z0 are approximately 1.5 and 2.0 rad, respectively. 
These parameter settings provide an ideal condition. Spatial phase distribution Φs is 
calculated as 

 1,1 1,01

1,1 1,0

Im( / )
tan .

Re( / )s

F F

F F
Φ −  −

=  −  
 (4) 

Furthermore, interference phase α is obtained using F1,0 and F2,0: 
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For this purpose, Zr and Z0 should be determined before measurement; the two parameters 
can be calibrated arbitrarily via the function generator and assumed to be constant. For the 
calibration, these parameters were measured in advance using a conventional LDV. This 
approach is similar to the sinusoidal phase modulation technique [25] except for one 
characteristic: the analysis described in this study involves the beat signals resulting from the 
three different modulations mentioned above. 

Note that the modified WHIV technique can determine all the vibration parameters two-
dimensionally without lateral scanning. On the other hand, this method has the following 
disadvantage. When the values of α are in the vicinity of integer multiples of π rad, the 
intensities of frequency components of F1,1 and F1,0 are hardly detectable due to the sin(α) 
dependence for odd terms in Eq. (2) and (3). Therefore, in this so-called “unmeasurable area,” 
the amplitude and phase values cannot be obtained accurately (see Subsection 3.2). Therefore, 
we filtered out the unmeasurable area in the process of determination of the parameters 
necessary for characterization of the sample’s vibration. 

2.3. Animal preparation 

In vivo wide-field tomographic and vibration measurements were performed on the cochlear 
sensory epithelium of a guinea pig as a sample, as follows. 

First, a guinea pig was deeply anesthetized with intraperitoneal injection of urethane (1.5 
g/kg). The toe pinch, corneal reflexes, and respiratory rate were examined to evaluate the 
depth of anesthesia. When anesthesia was insufficient, urethane (0.3 g/kg) was additionally 
injected into the animals. After tracheotomy, which was conducted for the maintenance of 
spontaneous breathing, the animals were paralyzed by intravenous injection of vecuronium 
bromide (3 mg/kg) (Vecuronium for intravenous injection; Fuji Pharma, Japan) [26]. 
Subsequently, the animal was artificially ventilated with room air using a respirator (SN-408-
7; Shinano Manufacturing, Japan) [27]. We stopped the ventilation during the measurements 
for 4 s to prevent the motion artifact. 

A fenestra was surgically opened on the lateral site of the bulla in order to shine the SC 
light on the sensory epithelium in the basal turn through the transparent round window. 
Basically with this hole the measurements can be carried out. In our preparations, an 
additional hole was made on the anterior portion of the bulla. This arrangement allowed us to 
directly confirm the position of the beam spot during the recording and thereby significantly 
improved the efficiency of the experiments. 
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Fig. 3. Sample preparation. The cochlea of a live guinea pig was surgically exposed (left panel) 
and subjected to the experiment. Light was applied to the sensory epithelium (middle panel) 
through a transparent round window (the dotted circle in the left-hand panel). A schematic 
image of irradiation of the epithelium is provided in the right-hand panel. 

Then, the animal’s head was fixed on an acrylic plate (50 × 20 × 5 mm). The plate was 
tightly connected to an articulating base stage (SL20/M; Thorlabs, USA). In this process, the 
angle and position of the cochlea were manually controlled to enable the laser beam to 
irradiate the sensory epithelium through the round window membrane as perpendicularly as 
possible. This method does not require a hole to be artificially made in the cochlear bony wall 
for the irradiation and is hence noninvasive (Fig. 3). 

The irradiation time during the measurements was several minutes in total. In spite of high 
irradiation power (37 mW), the tissue is likely to be damaged only minimally because the 
body fluid in the cochlea dissipates the heat generated by the irradiation. Alternatively, 
because the area irradiated by the light beam is relatively wide, the energy actually received 
by the tissue might be weaker than expected. To preserve an animal’s condition as much as 
possible, all the procedures in the experiment were completed within 4 hours. 

The experimental protocol was in compliance with federal guidelines for the care and 
handling of small rodents and was approved by the Institutional Animal Care and Use 
Committee of Niigata University [28]. 

3. Results 

3.1. Validation of OCT imaging 

We initially evaluated the axial resolution and sensitivity of the imaging by the improved MS-
OCMV. Figure 4(A) depicts a first-order interference fringe detected by a pixel of the CMOS 
camera when a planar mirror was illuminated in the OCT system. The frames of interference 
images were captured as a time series and were used to reconstruct 3D volumetric data. As 
shown in Fig. 4(A), the fringe was obtained after removing the DC component from the raw 
data. This signal was processed with the Hilbert transform [29] and an adequate bandpass 
filter to reduce noise and extract the envelope. The signal process was carried out along the z-
axis (axial depth direction) at each x and y coordinate. As depicted in Fig. 4(B), to properly 
apply the Hilbert transform, at least eight frames are necessary to construct one period of the 
fringe. Finally, a cross-sectional distribution in the depth direction was obtained as an “A-
line” by squaring the extracted envelope as presented in Fig. 4(C). This process was carried 
out at all x-y coordinates simultaneously via the 3D fast Fourier transform (FFT) in the 
Matlab software. The axial resolution determined via full width at half maximum (FWHM) of 
the A-line was approximately 2.7 μm. 
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Fig. 5. Heterodyne signals detected by the WHIV technique with a vibrated mirror. (A) 
Microscopic en face interference raw images of the sample’s surface at time points 0.42, 1.00, 
and 1.53 s. (B) A typical temporal heterodyne interferogram obtained in a point region 
indicated by a in (A). (C) Frequency domain signals obtained by FFT. (D) A 2D distribution of 
the frequency components |F0,1| (170 Hz) and |F1,1| (250 Hz) and a noise component (800 Hz). 

Figure 5(B) illustrates the temporal change in the heterodyne signals at one point on the 
mirror (see dot a in Fig. 5(A)). In this experiment, the PZT was stimulated with an alternating 
current (AC) voltage of 5 V. From the recorded data, the frequency-domain signals were 
obtained by fast FFT, as shown in Fig. 5(C). We detected two components, i.e., F1,1 and F1,0, 
at 250 and 170 Hz, respectively. These results are consistent with the theoretical observations 
mentioned above. We further analyzed all the data points obtained on the surface of the 
sample with FFT (Fig. 5(A)). Then, from the signals that ranged from 0 to 1 kHz, the F1,1 and 
F1,0 components were extracted; they are visualized two-dimensionally in Fig. 5(D). Note that 
these two series of data were subjected to detection of the amplitude and phase distribution of 
the vibrations in the sample. As expected, little spatial information was available from the 
background noise observed at 800 Hz as shown in Fig. 5(D). 
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σΦ can be a measure of accuracy in the detected signal. On the other hand, σZ was 
proportional to Zs, indicating that the rate of measurement error was constant irrespective of 
the amplitude value in our system. 

3.3. In vivo wide-field vibration analysis of the sensory epithelium 

Using the MS-OCMV with the improved WHIV technique, we examined the cochlear 
sensory epithelium of a live guinea pig. First, to perform tomography of the tissue, we carried 
out an en face OCT measurement in a planar area of 522 × 522 μm at a resolution of 850 × 
850 pixels. A total of 8000 en face images were acquired at a frame rate of 2000 fps by 
scanning within approximately 560 μm in the axial direction. Because of the high output 
power of the SC light source, the data were obtained in a single scan. The time of acquisition 
of these volumetric data (i.e., total scanning time) was 4 s. Optical magnification of the 
objective lens was set to 9.8, resulting in numerical aperture of 0.0093 and the depth of focus 
of 92 µm. 

From the obtained data, we selected an area of 256 × 256 pixels for subsequent analyses. 
This component was processed as described in Subsection 3.1. After that, 3D volumetric 
images were reconstructed Fig. 8. (A), (B) shows the 3D volumetric images of the sensory 
epithelium including the neighboring bony component from different viewpoints. The 
contrast of the images was controlled by discarding low-intensity data below a threshold 
manually determined for each 3D data series. The dynamic range of the visualization was 
approximately 11 dB. 

Figure 8(C) illustrates a remeasured result from the sensory epithelium in the portion 
enclosed by the dotted line in Fig. 8(B). In this measurement, 4000 en-face images were 
acquired by scanning within approximately 350 μm in the axial direction. Acquisition time 
was 2s. Figure 8(D–F) depicts the X-Z cross-sectional images sliced at Y axes corresponding 
to dotted lines 1, 2, and 3, respectively, in Fig. 8(C). The outline of the cross-sectional images 
was similar to a well-known view of the guinea pig sensory epithelium displayed in Fig. 8(G) 
[31]. In particular, the sensory epithelium has multiple regions that lack cells (e.g., the tunnel 
of Corti and inner sulcus); they are hallmarks for identifying such components of the 
epithelium as the BM, reticular lamina (RL), and tectorial membrane (TM). Therefore, in the 
images in Fig. 8(D–F), we could roughly detect the structures of BM, RL, and TM. 

We next intended to visualize and quantify the vibrations of the sensory epithelium in the 
wide-field mode. Axial OCT scanning was performed near the BM, and this position was 
chosen as a target. During the measurement with the improved WHIV technique, the animal 
was exposed to a pure tone sound of 21, 22, 23, 24, or 25 kHz through a Y-shaped waveguide 
that was connected to the exit of a speaker (EC1; Tucker-Davis Technologies, FL, USA). The 
intensities of the acoustic stimuli were monitored by an ultrasonic microphone inserted into 
one output port of the waveguide. The other output port was tightly inserted into the left 
external ear canal of the animal. All the parameters for operating the system and the algorithm 
for analyzing the data were the same as those used in the performance evaluation experiment 
with the mirror, except for the following characteristic. In the animal experiment, the data 
throughout the image (256 × 256 pixels) were analyzed by FFT, and the 2D distribution and 
intensity of the F1,1 component were monitored by the computer. This preliminary analysis 
indicated that the target region in the sensory epithelium responded most markedly to 23 kHz 
among the five frequencies that we tested (see the results described later). 
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F1,1 (|F1,1|) exceeded the threshold; otherwise, the configuration was set to “0” or “black.” 
This process was applied to all the pixels at the same time, and the result was transformed 
into a black-and-white 2D map. This image is referred to as “mask 1.” Third, on the basis of 
the interference phase α distribution, a pixel that manifested itself as an unmeasurable area 
was set to “0” or “black,” whereas a measurable pixel was set to “1” or “white” (Fig. 6(D)). 
This digitization was carried out for all the pixels simultaneously, thus affording a 2D image 
called “mask 2.” The final step was the “AND operation,” in which a pixel with the value of 
“1” in both masks was redefined as “1” or “white,” and data smoothing was performed by 
means of a median filter. These procedures produced the “conclusive mask” (Fig. 9). 

Fig. 9. The masking procedure. In mask 1, when the absolute value of the peak of F1,1 in a 
pixel exceeded the threshold determined as described in the text, the pixel value was 
transformed to “1” or “white.” Mask 2 served to filter out the unmeasurable area according to 
the value of interference phase α. In this configuration, the measurable pixel was referred to as 
“1” or “white.” Masks 1 and 2 were merged by the “AND operation,” in which the pixel with 
the value of “1” in both masks was set to “1” or “white.” Finally, to the conclusive mask, the 
median filter was applied for data smoothing. For the detailed procedure, refer to the text. As 
indicated in the boxed panel, the distributions of (a) Zs and (b) Φs were segmented through the 
conclusive mask. The ROI of the sensory epithelium in the wide-field mode was determined 
by this procedure. 
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deviation of this parameter was apparent under the control conditions (Fig. 10(E–H)). This 
difference seems to stem from the lack of noise sources, such as breathing and blood flow, 
after death. 

Fig 12(A) presents a plot of the average values and standard deviations calculated from 
the vibration amplitude recorded for all the pixels included in the ROI (approximately 2000 
pixels) versus different sound intensities. Note that the number of pixels differed among the 
trials. Overall, the values for the live guinea pig (control) exceeded those for the postmortem 
animal, as mentioned above. A comparison of these two series of data revealed that when the 
stimuli were relatively weak (70 and 75 dB), the response increased under the control 
conditions [2,31]. This nonlinear amplification supports the idea that the cochlea (including 
the sensory epithelium) was damaged only minimally during the measurement. 

Fig 12(B) illustrates the measurements at 21, 22, 23, 24, and 25 kHz (85 dB SPL). For 
each type of stimulus, the ROI was determined. The averaged values of the amplitude were 
obtained with the procedure utilized in Fig. 12(A). The other displayed parameters are the 
deviations of phase values (σΦ). At the stimuli of 23 kHz, the amplitude was maximal and the 
deviation was minimal. Because the lower σΦ value means a higher SNR of the detected 
signal as mentioned in Subsection 3.2, we inferred that the characteristic frequency at the 
point we examined was 23 kHz. This observation is in agreement with the aforementioned 
preliminary finding that the characteristic frequency of the epithelium targeted by the laser 
was 23 kHz. 

 

Fig. 12. Epithelial vibrations measured with the improved WHIV technique. (A) Vibration 
amplitude. The data were collected from the ROI (~2000 pixels) of the sensory epithelium in 
the control (red curve; live guinea pig) and postmortem (black curve). The animal was exposed 
to stimuli of 23 kHz at various SPLs. The average values and standard deviations (SD) are 
plotted. (B) The tuning curve of the vibration amplitude (blue curve) and phase (orange curve; 
σΦ). In this assay series, the live animal was acoustically stimulated with different frequencies 
(21−25 kHz; 85 dB SPL). The averages and SD of the data in the ROI individually determined 
for each stimulus are shown. The phase values were obtained with Eq. (6) (see text). 

Theoretical models and experiments on the base of the cochlea corroborate that the BM 
shows wave propagation behavior with the phase gradient along the cochlea from the base to 
the apex in the region of the characteristic frequency [2]. In the region of the sensory 
epithelium approximately 2–3 mm in length observed through the window, the characteristic 
frequency is known to be in the range 28–32 kHz [33] along the cochlear spiral on the basal 
side. The other apical side can be predicted to be 19–22 kHz according to Ref [32]. 
Furthermore, the experimental results mentioned above suggest that the characteristic 
frequency varies in the range ~21–25 kHz in the region we examined. Especially significant 
signals were detected at 23 kHz (Fig. 12(B)). Therefore, it is expected that the phase 
difference caused by the traveling wave that is scale invariance can be detected in this 
frequency range. 
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result was removed where the number of valid points was less than 2.5% of the pixel number 
in the vertical line (for example, most of data located out of the ROI). Finally, from the 
averaged phase plot, the tilt of an approximate straight line obtained via polynomial 
regression was estimated as the phase gradient. In this analysis, the standard error of the 
approximation for the line was ~0.05 rad on average. 

As a result, the gradient of the phase varied between approximately 1 and 7 rad/mm. The 
phase changes were observed at 23, 24, and 25 kHz oscillations of the postmortem animal. In 
the case of the live animal, comparatively small phase gradients were observed. The result at 
23 kHz, which was considered the characteristic frequency, was estimated to be 1.15 and 5.39 
rad/mm respectively in the live and postmortem animal. The largest gradient was estimated to 
be 6.27 rad/mm at 25 kHz oscillation postmortem. Reasonable values of phase gradients were 
obtained in this analysis as compared with the result obtained in Ref [34]. We confirmed the 
phase changes predicted theoretically by analyzing selected distributions with relatively less 
noise. Further improvements are needed for more sensitive and accurate measurements in a 
live tissue. 

4. Discussion 

MS-OCMV has been developed for en face measurement of biological vibrations by the 
WHIV technique. In comparison with Doppler SD-OCT, however, disadvantages and 
problems are yet to be improved. Generally, standard Doppler SD-OCT is superior to our 
method in terms of real-time performance and sensitivity (SNR of 90–100 dB and picometer 
accuracy for vibrometry). Our system might be superior in terms of the speed of capturing 3D 
volumetric data with spatial simultaneous en face detection using a high-speed CMOS 
camera. SD-OCT and a conventional LDV requires a photodetector or a line sensor with high 
sampling frequency to avoid aliasing. In our technology, in principle, there is no limitation on 
the vibration frequency because the heterodyne signal sufficiently detectable by a CMOS 
camera produced by two sinusoidal phase modulations is utilized to analyze the vibration. 

Nevertheless, for practical applications, high-speed cameras are preferred, to avoid the 
effects of low-frequency noise mentioned above. In addition, sensitivity of the high-speed 
CMOS cameras is generally lower than that of standard photodetectors owing to the lower 
full-well capacity (16,000 e−). Besides, it is known that SD-OCT methods based on Fourier 
spectroscopy guarantee a higher SNR than qualitative time domain methods [35,36]. A 
representative Doppler SD-OCT system (e.g., Ganymede SD-OCT, Thorlabs, USA) provides 
sensitivity of ~100 dB for OCT imaging. On the other hand, OCT sensitivity of an MS-
OCMV system were estimated to be approximately 40 dB, respectively. Further improvement 
of the system is needed for practical in vivo measurements. In this section, we discuss current 
issues from this perspective to clarify the limitations and prospects. 

4.1. The noise level of OCT 

The original MS-OCMV, which was equipped with an SLD light source (center wavelength: 
820 nm), could not clearly detect either the 3D volumetric image or the sound-induced 
vibrations in the sensory epithelium. In this series of experiments, the light source typically 
administered an optical power of 0.06 μW to each pixel of the CMOS camera during a usual 
exposure time of 0.5 ms. Because of the low reflectance of the sensory epithelium, it is 
estimated that a pixel of the camera with a quantum efficiency of 25% received only 54 e− 
from the tissue. In such a condition, the noise of the signal can be determined as 

 2 2
td snoise N N= + ,  (7) 

where Ntd and Ns denote temporal dark noise (i.e., read noise) and shot noise, respectively. In 
accordance with the native profile of the image sensor [37], temporal dark noise (Ntd) was 29 
e−. Shot noise (Ns), calculated by the square root of the number of photon fluxes on a one-
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amplitude voltages applied to the PZTs for Zs, Zr, and Z0 were set to 1.0, 1.0, and 5.0 V, 
respectively. The en face images consisted of 256 × 256 pixels were extracted to display the 
distribution set of F(0) and F(Δf) or of F0,0, F0,1, and F1,1 in the original method and improved 
method, respectively, as illustrated in Fig. 14. 

The intensity of the frequency component F(0) in the original method can be written as 
[16] 

 ( ) ( )xy xy xy 0 s 0 rF 0   | A  B cos(a )J Z J (Z ) | .= +  (8) 

Vibration amplitude Zs can be obtained by extracting the second term from Eq. (8) and 
calculating the intensity ratio to first-order component F(Δf) via a process similar to the one 
described in Subsection 2.2. Nevertheless, it is difficult to eliminate DC component Axy 
because these two terms are linearly added and merged into one signal in the frequency 
domain. Thus, initially, the original technique [16,18] employed 2D image processing based 
on the traditional Fourier transform method [39] focusing on the spatial interference fringe 
pattern appearing in the obtained en face distribution (Fig. 14(A)). Nevertheless, this 
arrangement rather resulted in diminished accuracy for quantifying the vibration amplitude 
especially when the analyzed surfaces were complicated as in biological tissues. In Ref [17], a 
substitute method utilizing a second-order component instead was adopted. Nonetheless, the 
intensity of the substitute signal is inherently weaker than that of the zeroth- and first- order 
signals. This problem is prominent when we analyze biological samples such as the cochlear 
sensory epithelium that yield a weak interference signal. 

To solve these problems, in the improved method, the zeroth-order component can be 
clearly separated from the DC component by means of a third signal (DC offset modulation). 
As shown in Fig. 14(B), obviously F(0) contained only DC term Axy. The zeroth-order 
component was obtained as F1,0 independently. The principle that can be discerned in the 
frequency domain is that the zeroth-order component was shifted by offset modulation 
frequency f0 from 0 Hz, and that first-order component F1,1 was regarded as a sideband 
around F1,0. This feature enables accurate extraction of this essential signal for the vibration 
amplitude without interference from the DC component. 

An advantage of this improvement is that the method can also estimate the interference 
phase α. In addition, the vibration amplitude can be estimated in the “unmeasurable area” 
using the pair of second-order signals, F2,0 and F2,1, alternatively. A disadvantage of this 
improvement is that in the comparison of the peak intensities between |F(Δf)| and |F1,1|, the 
SNR in the improved method deteriorated by approximately 10 dB as shown in Fig. 14. 

The effect of low-frequency noise was also confirmed in Fig. 14(A). The low-frequency 
noise was distributed up to about 50 Hz (Fig. 14 (A)), and when WHIV was used, it appeared 
as sidebands of each frequency component. This low-frequency noise was mainly due to 
mechanical disturbances of the interferometer. In the original method, modulation frequency 
Δf is set higher to prevent the influence of low-frequency noise. Even in the improved 
method, it was necessary to guarantee a sufficient frequency spacing between the longitudinal 
modes to separate them from the sidebands of noise components. Therefore, in our system, by 
introducing a high-speed CMOS camera with 2000 fps or more, accurate measurement could 
be achieved that was less susceptible to the low-frequency noise. 

4.3. The performance limit of the improved WHIV technique 

In general, verification of the limit of detection is crucial for characterization of any analytical 
instrument or method. As for the improved WHIV technique, here, we chose an in silico 
approach to evaluate the error in the measurement of vibration amplitude. According to Eq. 
(1), in the simulation, we set several parameters to reconstitute the interferometric heterodyne 
signals in the time domain as follows: Zr = 1.8 rad, Z0 = 1.8 rad, fs = 23 kHz, fr = 23080 Hz, 
and f0 = 170 Hz. In addition, we reproduced the noise floor of −70 dB as shown in Fig. 7(B) 
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and found it to be roughly 5 nm (Fig. 15(B)). Further studies are needed to elucidate the 
details of the actual sensitivity of in vivo measurement. 

4.4. Motion artifacts 

A motion artifact generally leads to a loss of vibration data and deterioration of the SNR ratio. 
If the fluctuation of the OPD is limited to a phase change of approximately several hundred 
nanometers, it is possible to remove its influence because the fluctuation is detected as low-
frequency noise of the signal. Further changes lead to alteration of the measurement area. 
Therefore, it is desirable that the OPD fluctuate within a few micrometers, which is the 
coherence length during acquisition of the data. To prevent the motion artifact, we controlled 
the movement due to breathing of the animal by artificial ventilation via a respirator during 
the measurements as mentioned in Subsection 2.3. 

Another solution is to reduce measurement time by increasing the frame rate of the CMOS 
camera. The advantage of this improvement method is that it can reduce the accumulation 
effect of the detector and improve time resolution to capture the movement of the animal. 
Accumulation during exposure time in a pixel of the image sensor may cause blurring of the 
detected signal because it is very sensitive to the phase change due to the path length 
variation. Therefore, the accumulation effect of the detector worsens contrast in the 
interference signal. 

We investigated the influence on the contrast reduction exerted by accumulation time and 
scan speed in a previous study [17]. For instance, according to the simulation, it is possible to 
improve the degradation of interference contrast from approximately 78% to 94% when the 
frame rate increases from 2000 to 4000 fps if the frequency of heterodyne signal F1,1 is 250 
Hz. Nevertheless, application of this improvement requires careful consideration of the 
overall-light-intensity reduction due to the exposure time shortening. Given that intensity of 
the accumulated interference signal is also proportional to exposure time (e.g., see Eq. (6) in 
Ref [17].), acquisition at 4000 fps, for instance, causes deterioration of the SNR by 
approximately 3 dB as compared to the results of this study. As demonstrated in Fig. 15, 
deterioration of the SNR increases the error of the measured amplitude value. Therefore, there 
is a trade-off between amelioration of a motion artifact due to acceleration of the frame rate 
and an increase in measurement error due to shorter exposure time. 

5. Conclusion 

In this study, we drastically modified our previously developed MS-OCMV system for the 
acquisition of 3D tomographic images and for analysis of a wide-field vibration distribution 
of objects. The present system was equipped with an SC light source to enhance irradiation 
Furthermore, in the WHIV technique, we added offset modulation to the reference signal to 
accomplish wide-field measurement of ultrafast vibrations in a biological sample. The 
performance of the improved MS-OCMV system for 3D volumetric imaging is characterized 
by a transverse resolution of 3.6 μm and an axial depth resolution of 2.7 μm. The vibration 
amplitude detectable with this system was estimated to be ~1.1 nm, and measurement 
accuracy is similar to that of conventional LDVs. These settings enabled us to detect the 
structure and motion in an acoustically stimulated cochlear sensory epithelium of a live 
guinea pig, even though this tissue has an extremely low reflectance rate. With sounds of 
different intensities or frequencies, the spatial distribution of the vibration amplitude and 
phase was quantified and mapped onto a 3D volumetric image. The profile changed when the 
animal was euthanized. The proposed technique can provide a platform for effective analysis 
of the cochlea as well as other organs, thereby contributing to advances in life sciences. 
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